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Abstract. Some aspeas of the bound state and scattering properties of a quantum mechanical 
particle in an arbitrary scalar N-prong potential are wnsidered. Such a study is relevant 
in applications to mesoscopic devices. Multi-prong potentials are in some way intermediak 
between  one- and two-dimensional systems. In contrast to the one-dimensional situation, 
where there is no degeneracy, the energy levels for the case of N identical prongs exhibit 
an alternating pattern of non-degeneracy and (N - l)-fold degeneracy. We generalize the 
techniques ofsupersymmetric quantum mechanics to multi-prong systems and generate solutions 
to new N-prong systems. Solutions for prongs of arbitmy lengths are developed Scattering 
on piecewise constant potentials and tunnelling in N-well potentials are discussed in detail. 
Since OUT treatment is for general values of N, the results can be sNdied in the large N-limit. 
A somwhat surprising resnlt is that a free particle incident on an N-prong vertex undergoes 
wntinuousty increased backscattering as the number of prongs is increased. 

1. Introduction 

Various aspects of the solutions of the Schrodinger equation for both scalar and vector 
potentials on a wide variety of networks have been discussed by several authors 11-15]. 
Recent investigations have been motivated in part by the considerable interest in mesoscopic 
systems and the experimental observation of persistent currents [ 161. These studies cover the 
situations of constant scalar potentials, identical on all prongs, vector potentials associated 
with uniform magnetic fields, or 8-function potentials at the network vertices. 

In this paper, we discuss the bound state and scattering properties of a single quantum 
mechnical particle moving in an arbitrary scalar N-prong potential. Our treatment clearly 
shows the generalization from the two-prong case, which is just the familiar one-dimensional 
(particle on a line) problem. For simplicity, here we do not consider &function potentials at 
the vertex. Properties, such as degeneracies of eigenstates, boundary conditions, scattering 
and tunnelling on such N-prong systems are not a priori evident, since these systems are 
in some ways intermediate between one and two dimensions. For example, in contrast 
to the onedimensional situation where there is no degeneracy, the energy levels for the 
case of N identical prongs exhibit an alternating pattem of non-degeneracy and (N - 1)- 
fold degeneracy. The concept of supersymmetry has yielded many interesting results for 
one-dimensional quantum mechanics [17, 181. We find that that these techniques can be 
generalized to N-prong systems and generate solutions to new potentials. Solutions for 
prongs of arbitrary lengths are developed in detail. In the case of identical prongs, the 
eigenfunctions of the original potential and its supersymmetric N-prong partner potential are 
degenerate. Scattering on piecewise constant potentials and tunnelling in N-well potentials 
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are discussed. Since our treatment is for general values of N, the results can be studied in 
the large-N limit. A.somewhat surprising result is that afree particle incident on an N-prong 
vertex undergoes more backscattering as the number of prongs i s  increased. This leads to 
zero kansmission and full reflection in the limit of infinitely many prongs, merely by the 
topology of the situation. While heuristic considerations would suggest that transmission 
into each single prong goes down as the number of competing prongs increases: this is 
not enough to explain why the reflection coefficient should go to one in this limit. We 
extend the familiar discussion of tunnelling in a double-well potential to the case of N-well 
potential systems. We find that the tunnelling of a wavepacket, localized in one prong, into 
other prongs decreases as the number of prongs is increased and goes to zero in the limit 
of infinite N ;  there always remains a remnant of the wavepacket in the original well. 

The plan of this paper is as follows. In section 2, we define N-prong potentials and 
give the boundary conditions which the wavefunction must satisfy. The normalization of 
wavefunctions and their orthogonality properties are also discussed. Section 3 contains a 
discussion of bound states for potentials with N identical prongs. The general solution is 
derived and is shown to be closely related to the solutions of a symmetric one-dimensional 
potential. Section 4 contains a discussion of bound states in N-prong potentials with 
non-identical prongs. Several analytical and numerical solutions are given to illustrate 
properties of the eigenfunctions. In particular, we find that a generalized version of the 
usual rule about one extra node for each higher eigenstate is probably true but the theorem 
about non-degeneracy, which holds in onedimensional situations, ,is not. Generalization of 
supersymmeuy to N-prong systems and applications are discussed in section 5. Section 6 
illustrates the use of lowest-order perturbation theory to obtain bound-state energies. 
Scattering is discussed in section 7. For the special case of no potential in any of the 
N prongs, surprising results are obtained which are quite different from naive expectations. 
Finally, in section 8, we generalize the concept of tunnelling to the case of N-well potential 
systems. 

2. Multi-prong potentials 

We are addressing the problem of formulating and solving the Schrodinger equation for a 
single particle constrained to remain in a space made up of N lines meeting at a vertex 
point.(figure 1). The prongs are labelled by the indices i (i = 1.2, . . . , N) and the position 
on any prong is given by the  positive^ coordinate xi,  with xi = 0 being the vertex point. 
The potential is fully specified by giving the scalar potentials K ( x j )  on each prong i. The 
overall wavefunction @(?) is composed of the individual wavefunctions +i(xi) on each 
prong i: 

We are using the arrow notation to indicate the appropriate N-tuple. The physical 
requirement of single-valuedness of the wavefunction at the vertex implies for the component 
wavefunctions 

*(3 ={@I(xl)* ... ,@w(xNv) l .  (1) 

tLI(0) = @ 2 ( o ) = . . . = @ N ( o ) .  (2) 
In this paper, we will not be considering $-function potentials at the vertex which have been 
discussed in [2, 6, 71. Consequently, the second vertex condition requires the sum of all 
derivatives to add up to zero [l, 61: 

(3) 
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N 

Figure 1. Schematic diagram of an N-prong potential. The 
position on any prong i is specified by the positive coordinate 
x,. with xi = 0 being the vertex. The angles between prongs 

2 ix 
3 4 play no role in any computations.~ 

This can be readily derived as follows. Let us embed the multi-prong system in a three- 
dimensional space. Let t be a neighbourhood that contains the vertex. For simplicity, 
assume that the system has all prongs in the x-y plane (polar angle 0 = 5). Since the 
particle is never to be found between prongs, the wavefunction is defined to be zero there. 
In the neighbourhood t, the wavefunction @ will then be given by 

where the Qi are the azimuthal prong angles. The time-independent Schrodinger equation, 
reads Vz@ = (V - E ) @ ,  taking units in which A = 2m = 1. We assume that the potential is 
finite in the above neighbourhood. Integrating the Schrodinger equation over a small sphere 
of radius E within t with the vertex as the cenire, and using the divergence theorem (and 
then letting E + 0), we get lim,,o JA V@ dA = 0, which reduces to (3) for an N-prong 
potential. Note that for the special case N = 2, one has the standard one-dimensional 
situation and, taking into account the relative directions of XI and x2, equation (3) is just 
the statement that the derivative d@/& is continuous across the vertex. 

The above boundary conditions are not the most general possible. They are reasonable 
from physical considerations, and have been used in [9] .  Other self-adjoint extentions have 
been considered by several authors [IO, 11, 191. Self-adjoint extensions are~defined in 
120, 211. 

For the N-prong system, we call two functions +(?) and $(?) orthogonal if 

(4) 

where the sum indicates that all prongs are included and each integral NILS over the 
appropriate prong length. The normalization condition, which also includes all prongs, 
reads 

The eigenfunctions of the Schrodinger equation in a multi-prong potential not only have 
to satisfy the vertex conditions given in (2) and (3), but also appropriate boundary conditions 
at each prong end. These conditions depend on the energy E and the specific behaviour of 
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V;(x;)  for the maximum allowed value of xi. Eigenfunctions corresponding to bound-state 
solutions have to vanish at the prong ends. For potentials which reach a constant value 
fast enough at the prong ends, one has standard plane wave solutions (e"kx;, e-ikx;) for the 
scattering states. 

3. Bound states: identical prongs 

We begin by discussing the interesting special case of N identical prongs, i.e. V,(x i )  = 
V(x i ) .  Note that this does not imply that the wavefunctions are identical on all the prongs. 
In fact, equation (3 )  implies that the wavefunctions are often different, since their derivatives 
at the vertex have to add up to zero. This statement is the generalization of the two-prong 
case, where one has symmetric and antisymmetric solutions. 

The general bound-state solution for N identical prongs is easily obtained from the 
two-prong situation. For two identical prongs, one has the situation schematically shown 
in figure 2. We can define the single variable x such that x = X I  for positive x ,  and 
x = -xz for negative x .  Effectively, one is mapping the two prongs onto the real axis, 
--oo < x < CO. Clearly, this is the familiar situation of a symmetric one-dimensional 
potential. Its eigenstates correspond to even and odd solutions @ ' ( x )  at energies E,,, 
labelled by a quantum number n (n = 0,1,2, . . .). 
Theorem. The eigenstates of a potential with N identical prongs can be constructed from 
the eigenfunctions @(")(x)  of the corresponding symmetric two-prong system, and have 
exactly the same eigenenergies. Explicitly, 

~(~ ' ( z , .? )  { a ~ + ( n ) ( x ~ ) ,  uz@'(xz). . . . , uNII ." ' (xN)}  (xi > 0). (6) 
where ?i is a compact notation for the N-tuple (a,, az, . . . , U N ) .  For even-numbered states 
the bounday conditions at the vertex imply U ,  = az =. . . . = U N ;  for odd-numbered states 
one has the constraint xi ai = 0, and there is an ( N  - 1)-fold degeneracy. 

1.0 0.5 0.0 0.5 1.0 
Q-~ x2 + x, --o 

Figure 2. Example of a potential with two identical prongs, The positive variables x 1 . x ~  
together span the real z-axis (-m < x c m). 
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Proof. By construction. the wavefunction $Cn)(;, 2)  for an eigenenergy E, satisfies all the 
boundary conditions at the prong ends. It only remains to show that the vertex conditions, 
equations (2)  and (3), are also satisfied by (6). 

(i) For even eigenfunctions of a two-prong potential one has v(0) = 0, and in general 
@(O) # 0. Equation (3) is therefore trivially satisfied, and (2) implies at = a2 = . . . = U N .  

The eigenfunction is therefore determined up to one overall normalization constant, and the 
energy level is non-degenerate. 

(ii) For odd eigenfunctions of a two-prong potential, one has v(0) f 0, and @(O) = 0. 
Now; equation (2) is trivially satisfied (since each wavefunction vanishes at the vertex) and 
the derivative condition (3) implies xi ai = 0, as claimed. This constraint is not sufficient 
to fully determine the constants ai,  and the levels have an ( N  - ])-fold degeneracy. The 
completeness of states in (6) seems intuitively reasonable, and can be established from the 
completeness of the eigenfunctions of a symmetric one-dimensional potential. 

As a first illustrative example, consider a paaicle of mass m moving in a harmonic 
potential with three identical prongs 

U) 
Each prong corresponds to the positive half of a harmonic oscillator potential. The ground 
state of this three-prong potential will have the same energy EO = l hw  as the two-prong 
case. The unnormalized eigenfunction is given by 

(8) 
where, cx e-wr2/4 is the Gaussian harmonic oscillator ground-state wavefunction. We 
assume @(")(x)  to be normalized to unity over one prong, so that the wavefunction in 
(6) is properly normalized. The next level at energy El  = $ 3 ~  is doubly degenerate. 
Eigenfunctions at this level are given by 

I 2 2  V ( x i )  = ;imw x,  . 

@(O)(?i,  2)  = [a@.'o'(xl), a@(o'(xz), U@(O)(Xj)} 

@(I)(& 2) {a1@(')(x,), a2@'"(x2), aS@(')(x3)} (9) 
il where cx xe-oxi/4 is the wavefunction for the first excited state of the two-prong case. 

There is an infinite number of wavefunctions @(')(& 2) that correspond to the same energy 
5hw; Each of these wavefunctions is characterized by a set of coefficients ai obeying 
the constraint xi ai = 0. Due to this constraint, we see that all allowed ai span a two- 
dimensional space, thus leading to a two-fold degeneracy at this level. The following two 
functions then provide one choice for an orthonormal basis in this two-dimensional two-fold 
degenerate space: 

This pattern of non-degeneracy/degeneracy keeps repeating as we consider higher energy 
states. All even-numbered states are non-degenerate and all odd-numbered states have two- 
fold degeneracy. The three lowest eigenstates are shown in figure 3. The normalization has 
been chosen such that 1; @(")*(x)@'"'(x) dx = 1. 

Similarly, the eigenfunctions for the potential V ( x i )  = 0, xi < I are shown by 
the broken curves in figure 4. The wavefunctions are sinusoidal, and the energies are 
E,, = n2z2  14 (n = 1,2, . . .), since they correspond to a symmetric two-prong potential 
which is an infinite square well of width 2. 
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- 1.0 

I' 0.6 6 -- 0.6 
0, 3 0.4 

0.2 
0.0 

0 1 2 3  1 2 3  1 2 3 4  
X1 x2 x3 

Figure 3. The three lowest dgenfunctions (equations (8H10)) for a three-prong harmonic 
oscillamr potential V(xi )  = f m o f x f .  The ground state @ is non-degenerate, whereas the 
fim excited stale $(I) is doubly degenerate. 

v 

3 0.4 
0.2 
0.0 

-0.6 

-1.0 

I h OS 0.0 < . ................... ................. ... . ................... 
N 
3 -0.6 

-1.0 
, \ ' ,  - 

0 .2 .4 .E .8 P A .E .E e A .E .E 1.0 
X1 xz XS 

Figure 4. The three lowest energy eigenstares (unnormalized) for a three-prong free-particle 
potential. The full C U N ~ S  correspond to 11 = 13 = 1. It = 0.8. The broken curves correspond 
to the identical prong c a e  11 = 12 = 13 = 1 . 

From the above examples, it becomes clear that a potential with N identical prongs 
will have altemate non-degenerate and ( N  - ])-fold degenerate energy levels. Clearly, the 
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familiar non-degeneracy property of one-dimensional potentials is maintained for N = 2, 
but not for situations with more prongs. 

@I@,E) 0 ... 0 1 
0 &(O, E) ... 0 1 

... 

@;@, E )  @;Co. E )  . ' " @;(ox E )  0 

... ... ... det . .. 
0 0 ." @N(O>E) 1 

4. Bound states: non-identical prongs 

Let us now consider the general case of an N-prong system with potential &(xi)  on the 
ith prong. Let @i(xi) be the solution of the Schrodinger equation with energy E along that 
prong: 

2 .  _ _  * r  +(& -E)*;  = 0 (i = 1,2,. . .., N).  
dx; 

Of the two linearly independent solutions to this equation, let @i(xi, E )  be the one that 
vanishes at the end point of the ith prong. This implies @i(xi ,  E )  = ui@i(x;. E ) ,  where ai 
is a constant. These @ { ( x i ,  E ) ,  glued together properly so as to satisfy vertex requirements, 
will produce the wavefunction for the entire domain. From vertex conditions (2) and (3). 
we get 

*i(O, E )  = Ui@i(O, E )  = U (11) 
and 

=o. (13) 

N N C*;co. E )  = Cu;@;(O, E )  = 0. 
i=l i=l 

If desired, the constant U can also be fixed by requiring overall normalization of the 
wavefunction. 

To illustrate the procedure for determining eigenvalues, consider the example of a 
particle that is free to  move^ inside a domain of three prongs of lengths I , ,  lz and /3. 

Since the potential along the prongs is zero, the wavefunctions along them are given by 
sinusoidal functions that vanish at the end points. An eigenfunction of energy E = k2 has 
the form 

@(&.?) = [alsink(l, -x~).uzsink(lz -x~),assink(Z3 -x3)). (15) 
In this case, equation (1 1) is 

nl sin kll  = a2 sin kl2 = a3 sink4 = U (16) 
where U is the common value of the wavefunction at the origin. The derivative condition 
(12) gives 

U I  COS kll  + U* COS klz + uj COS kl3 = 0.  (17) 
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The eigenvalue condition (13), when simplified, reads 

cos kll sin k12 sink15 + sin kl, cos kl2 sin k13 + sin kll sin klz cos k13 = 0.  (18) 

As a specific case, consider the situation l 2  = 0.8 and 1, = l5 = 1. For this case, 
the solutions to (18) are found to be k = 1.68,x, 3.61,5.08,2x,7.17,8.54,3x,. . . . The 
solutions k = mx (m = 1,2,. . .) are a consequence of maintaining partial symmetry by 
taking two prongs to be identical (11 = l3 = 1). The corresponding wavefunctions are 
shown by the full curves in figure 4. (For comparison, we have also plotted the broken 
curves Corresponding to the wavefunctions for the case of all three identical prongs of length 
1.) From the figure, it is apparent that the ground-state wavefunction at EO = 1.6g2 has 
no nodes. The first excited state at E1 = n’ has one node at the vertex point. Note that 
for this state, the wavefunction in prong 2 is zero. The second excited state is at energy 
E2 = 3.61’ and has two nodes, one in prong 1 and the other in prong 3. This result is very 
suggestive-one expects one extra node to appear for each higher eigenstate, similar to the 
familiar one-dimensional situation. 

10 

0 

k 6  

4 

2 

0 0.5 1 1.5 2 2.5 3 

12 

Figure 5. The eigenvalues k (energy E = k2) For a three-prong free particle potential as a 
Function of 12, the length of prong 2. The lengths OF the other two prongs are kept fixed and 
equal 1,  = 13 = 1. Note the pattem of degeneracy and level crossings, The curves are labelled 
by the number of nodes in the wavefunction (in all prongs). 

We have also studied the variation of the eigenvalues k systematically as the prong 
length 12 is varied. The results are shown in figure 5. As discussed above, the solutions 
k = mx are present, and when 12 is an integral multiple of 11(= l3). one has the interesting 
occurrence of degeneracy and level crossing. The curves in figure 5 are labelled by the 
number of nodes in the wavefunctions. At any fixed value of 12, the number of nodes 
increases with energy. Note that as 12 + 0, the eigenvalues become doubly degenerate 
at k = mx, (m = 1.2, . . .). This is intuitively clear since the limit /2 + 0 forces the 
wavefunction to vanish at the vertex, thereby effectively breaking the problem into two 
infinite square-well potentials of widths I ,  = 1 and l3 = 1. Finally, in figure 6, we take 
11 # 13. and plot eigenvalues k. This is a completely asymmetric situation, and there is 
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10 

8 

6 k 

4 

2 

0 
0 0.5 1 1.5 2 2.5 3 

Figure 6. The eigenvalues k (energy E = kz) for a three-prong free p@de potential as a 
function of 12, the length of prong 2. The lengths of the other two prongs are kep1 fixed and 
unequal 11 = 1, l g  =,A. There is now no degeneracy. The curyes are labelled by the number 
of nodes in the wavefunction (in all prongs). 

now no degeneracy of energy levels. Again note that the number of nodes in the overall 
wavefunction increases by one with increasing energy levels. 

As a second example, we determine the eigenstate3 of a three-prong potential V,(xi)  = 
$&:, composed of three harmonic oscillators of different angular frequencies w;(i = 
1,2,3), and f i  = 2m = 1. The wavefunctions which vanish at xi + 00 are [24] 

where D, is a parabolic cylinder function. The eigenvalue condition (equation~(l3)) gives 
. ,6D:,(O)D,(O)D,(O) +cyclic permutations = 0. (20) 

The parabolic cylinder function and its derivative at the origin have simple expressions in 
terms of gamma functions 1241: 

The solutions of the eigenvalue equation are then easily found. For the choice 01 = 
1.0, 0 2  = 2.0, w,  = 3.0, one gets the four lowest eigenstates at energies E = 
0.83,1,94,3.29,3.85. There is no degeneracy since all the o are different. 

In the above two examples, exact analytic forms for the solutions @i(xi) were available. 
Even if this is not the case, it is easy to use numerical Runge-Kutta techniques applied to 
each prong. 

5. Supersymmetric quantum mechanics on multi-pronged domains 

Given any one-dimensional potential V ( x ) ,  the powerful techniques of supersymmetric 
quantum mechanics can be used to generate a partner potential p ( x )  with the same 
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eigenvalues [17, 181. This property has been extensively used to get a deeper understanding 
of exactly solvable potentials and for generating improved approximation methods (Swm 
method [25], large N-method [26], etC) for dctermining eigenvalues. Supersymmetric 
quantum mechanics provides an elegant formalism which includes and goes substantially 
beyond the method of factorization previously applied to some potentials [27]. In this 
section, we show how the ideas of supersymmetric quantum mechanics can be applied to 
a given N-prong system V ( 2 )  in order to generate solutions for a new N-prong potential 

As in the previous section, consider a scalar N-prong potential V ( 2 )  composed of 
potentials Vi(x;) on prong i (i = I ,  2, . . . , N). Its eigenvalues and eigenfunctions are then 
given by (13) and (14), respectively. The unnormalized ground-state wavefunction is 

V(2).  

det 

This can be used to define the superpotential W ( 2 )  whose value on prong i is 

$,(O,E) 0 .'. 0 1 
0 &(O, E )  ... 0 1 

0 0 ' ' _  &(0, E )  1 
... ... ... ... ... 

4C0, E )  &;CO, E )  ... &(O, E )  0 

It is easy to check that 

The supersymmetric partner potential is given by 

V;(xi )  = W?(xi) + W;(xi) + Ea. 

The potentials v i ( x i )  taken together make up the full N-prong potential v(2). From 
supersymmetric quantum mechanics, we know that the solution of the Schrodinger equation 
for potential V; (x i )  and energy E is given by [18] 

where ai are constants. Since @;(xi ,  E )  vanishes at the prong ends, so do all the &(xi, E ) .  
At the vertex, one wants 

&(O,E)=$j(O,E) ~~ and ~ & ( O , E ) = O .  (27) 

= O .  (28) 

In general, the eigenvalues obtained from (28) will be different from those coming from 
(13). However, there are two important situations where the same eigenvalues result. This 
happens for the special case of two prongs (N = 2) and for the case of all identical prongs. 
These results can be understood from a physical viewpoint, since N = 2 is the standard one- 
dimensional situation treated in supersymmetric quantum mechanics, and furthermore, as we 
have seen in section 3, these are the same eigenvalues for the identical-prong case. Thus we 
see the machinery of supersymmetric~quantum mechanics can be immediately applied to get 
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eigenvalues and eigenfunctions of the partner potential c(x') for the identical-prong case. 
The equality of eigenvalues from (13) and (28) can also be established fr0m.a mathematical 
viewpoint using.(26) and (27). 

6. Pertorbation theory 

Having solved a multi-prong problem, it is of interest to see the influence of a small 
perturbation of the potential in one of the prongs, say, on the energy levels. Here, for 
simplicity, we will only deal with an unperturbed system with three identical prongs. 
Consider an unperturbed system with potential V,(X;) = V&;) on each prong. Its 
completely symmetric ground state ., 

. ? - a  . 

(29) 
1 + ( O ) ( i , x ' )  = - - { + ( O ) ( X ~ ) ,  + ( O ) ( X ~ ) ,  +(O)(x3)} J5 

is described in terms of +(')(x); the ground-state eigenfunction of a two-prong system with 
the same potential Vo(x;) in each prong. We have chosen +(O)(x) to be normalized to unity 
over one prong, so that the wavefunction in (29) is properly normalized. The eigenenergy 
of this state is also the same as the ground-state energy of the two-prong system. The first 
excited state for this three-prong system is doubly degenerate. We choose the following 
two orthononnal states,as our base states: 

1 
*(I ) (&;  2)  - { I p ( X , ) ,  0, -+ ( I ) (x3)}  (30) Jz 

and 

Both of these states have exactly the same energy as the first excited state of the two-prong 
system. 

Now, let us include a perturbation VI that is non-vanishing in only one prong. The 
energy of the syskm is shifted and the degeneracy of the states of (30) and (31) is lifted. 
Interestingly, only one of the eigenvalues of the first excited state changes, while the other 
one remains the same, thus causing the split. We compute here such shifts for the ground 
state as well the first excited state of the system. For numerical concreteness only, in 
the following example, we use the harmonic oscillator potential for VO and a x :  as the 
perturbation potential VI on prong 1. Thus the unperturbed potential is 

(32) I 2 2  V&i) = p xi . 
Following the usual route, the shift of the ground state can be computed. The first-order 
shift, 6E0, is given by 

The next energy level has two-fold degeneracy, and hence it is necessary to use the 
formalism of degenerate perturbation theory. We compute the matrix elements of the 
perturbing potential VI using +(I)(Zl; 2) and +(')(~?2; 2)  as basis vectors. For this situation, 
the matrix V, is explicitly given by 
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where 

Diagonalizing the corresponding Hamiltonian, we find the eigenvalues to be 0 and 4 y .  
Hence, at this level, degeneracy is lifted and the difference in energy is $ y .  The two 
eigenfunctions are given by 

and 

(35) 
1 f i  -., 1 -$(')(cii:?) + -@(')(az; x )  = J(2@')(x1), -@l)(xz),  * ( 1 ) ( x 3 ) ]  . 
2 2 6 
It is interesting to note that the first state has the same energy as the unperturbed system. 
Thus we see that, since the perturbation was added to just one prong, it does not break the 
symmetry completely and one of the eigenenergies remains unchanged. 

7. Scattering in a molti-prong system 

The scattering of an incident plane wave off the vertex in a multi-prong system offers 
scenarios that are different from the usual scattering in one-dimensional problems. As a 
first example, consider a plane wave with energy E moving along prong 1, incident upon 
the vertex of an N-prong system with a constant potential V = 0 on all prongs. This is 
a Qivial example in the two-prong case leading to 100% transmission, and zero reflection. 
For more than two prongs, it is not apriori intuitively clear whether full transmission will 
occur or not. The wavefunction on prong 1 is given by 

@ ' ( X I )  = exp(-ikxl) + r exp(ikxl) (36) 
where k is the momentum of the incident plane wave ( E  = k2). The wavefunction on all 
the other prongs (i # 1) only consists of outgoing waves and is given by 

q j ( x i )  = ti exp(ikxi) . (37) 
Imposition of the boundary conditions (2) and (3) on these wavefunctions at the vertex relates 
the reflected amplitude r to the transmission amplitudes ti. Their explicit relationship is 
given by 

N 

(1 + r )  = ti (i = 2 ,  ..., N) r - 1 +Eti = 0. (38) 
i R  

The solution is 

(i=2, ..., N).  (39) 
2 t .  - - 2 - N  

N ' - N  
r = -  

The reflection and transmission coefficients are then given by 
4 T-- (i = 2,. . . , N )  . (2 - N)* 

NZ ' - NZ R =  

Clearly, one has R + E,"=, = 1, and the probability current is conserved. For N = 2, 
the reflection coefficient vanishes, as expected. However, for N > 2 there is always a finite 
amount of reflection. For example, for a threeprong potential, the reflection coefficient is 
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R = i. In fact R increases continuously with N ,  and approaches unity for a large number 
of prongs, N .  (This increase of R with N is shown in figure 7 by the curve labelled 1.) Thus 
one has the curious result that an incident wave, when given a large choice of scattering 
paths, in fact prefers to be reflected back on its initial prong! 

1.0 

0.0 

0.6 
R 

0.4 

0.2 

0.0 
2 4 6 0 10 12 14 

N 

Figure 7. A plot of the reflection coefficient 72 venu the number of prongs N. The incident 
wave with energy E is on prong 1 with m potential. All other prongs are taken to be at a 
eonsmt potential &, The curves are labelled by the parameter < = m. 

Now let us consider a more general case where the incident wave is on a prong with 
potential zero, whereas the remaining (N - 1) prongs are at constant potential V,. Let the 
energy of the wave be E > VO. Let us define kZ = E ,  kR = E - VO and the parameter 

The wavefunction on prong 1 is again given by $,(XI) = exp(-ikxl)+r exp(ikxl), and the 
wavefunctions along the remaining (N - 1) prongs are given by @j(xi) = tj exp(ik'xi) (i = 
2, . . . , N ) .  Boundary conditions (2) and (3) applied at the vertex yield 

(1 + r )  = t2 = t, = ... = t,v - t  - 1 + r  + ( N  - l)( = 0. (40) 

Solving these equations, we find 

One can show that r and t obey 1 = r2 + ( ( N  - l)tZ, as required by conservation of 
probability. The reflection coefficient RI which is now given by 

has a rather interesting behavior as a function of ( and N .  In figure 7, we have plotted R 
as a function of N for several values of 5. R vanishes for t = 1 / ( N  - 1). Thus for some 
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special values of VoIE, we have complete transmission through the vertex. As N increases, 
72 slowly approaches unity for all {. 

As yet another intcrcsting example we consider scattering from a T-stub with N open 
ended prongs and one prong of finite length I (the stub): We consider a case where potentials 
along all the prongs are zero. A plane wave of momentup k (energy E = kz) incident upon 
the vertex from prong 1, sets up stationary waves in the stub, and outgoing plane waves in the 
remainin; N - 1 prongs. The wavefunction on prong 1 is given by exp(-ikx,)+r expfikxl). 
Along the stub, the wavefunction is given by Asink(l - xs) ,  where x, is the coordinate 
along qe.stub and A is a constant. Wavefunctions along all other prongs are given by 
t exp(ikxj), (j = 2, . . . , N). From boundary conditions (2) and (3), we get 

(41) 

. .. ,. . 

( I  

' 1 + r = A sin kl = f ik(r - 1) + ik(N - l ) t  - Ak cos kl = 0. 

Solving them, we get 

-(N - 2) - cotkl 2 
N + icot kl ' 

r =  t =  
N + icotkl 

The reflection coefficient is given by 

cot2kI + (N - 2)* R G lrI2 = 
cot2kl + N2 

Clearly, from the above expression, one gets IrJ2 + (N - I)lt12 = 1. Interestingly, we find 
that for kl  = nn, i.e. energy E = n2n2/Z2, the reflection coefficient R + 1. At these 
energies, a standing wave is set up jointly in the stub and in prong 1, and the particle never 
enters the other prongs. 

Let us generalize the discussion of scattering to an N-prong vertex with identical 
potentials V ( q )  on all prongs. Define two linearly independent solutions f ( x i )  and g(xi )  
of the Schrodinger equation using asymptotic boundary conditions as xi + OD: 

f ( x i )  + exp(-ikxi) &xi) + exp(ikxi). (42) 

The vertex conditions are f(0) + r g(0) = t g(O), and f'(0) + r g'(O)+ ( N  - 1) t g'(0) = 0. 
The solution is 

Conservation of probability requires lrJz + (N - l) l t)2 = 1 for all values of N .  This is 
satisfied provided 

Here again, we see that as the number of prongs N + M, the reflection coefficient R = lr12 
approaches unity. 

Having analysed scattering on a general identical N-prong domain, we now investigate 
whether we can extract any further information using supersymmetry. In one-dimensional 
quantum mechanics, supersymmetry relates reflection and transmission coefficients of one 
potential with those of its supersymmetric partner potential [23]. We find that this 
relationship holds also for the case of N identical prongs. 

We have just seen that for the potential V ( x i )  on all prongs, the scattering is described 
by (43). The partner potential is given by (25). Let f and 2 be the solutions of the 
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partner potential which behave l i e  ! (x i )  + exp(-ikxi), H(xi) + exp(ikxi), as xi + bo. 
Functions f and 2 are given by 

(44) 
where W, is the value of the superpotential at infinity. From these expressions, we can 
show that 

The reflection and transmission amplitudes for the potential v ( x ; )  are given by 

Note, for the special case of two-prongs, these equations agree with [23]. We find the 
following relationship among r ,  t and their partners i and i: 

P = (  W,-ik ) r  i = - (  W, - ik I t .  
W,+ik  W, +ik 

Note that Ifl’ = lrI2, which implies that for the identical-prong case, the reflection 
coefficients are the same for any potential and its supersymmetric partner. 

Now, using an explicit example, we provide a concrete demonstration of the usefulness 
of the machinery that we just developed. For the sake of simplicity, we shall work with 
the example of a free particle in an N-prong system for which reflection and transmission 
coefficients are given by (39). The superpotential for this problem is given by W ( x )  = 
tanhx. This superpotential generates two distinct potentials related by supersymmehy. 
They are V ( x )  = W 2 ( x )  - W’(x) ’= 1 - 2sech’x and v ( x )  W z ( x )  + W’(x)  = 1. The 
fist potential holds one bound state at energy E = 0. 

Amplitudes i and i for the free particle system are (2 - N)/N and 2/N, respectively. 
Amplitudes r and f for the potential V ( x )  = 1 - 2 sech’x, are then given by 

1 f ( 0 )  N - 1 f(0) 

1 -ik 

Thus, knowing the reflection and transmission amplitudes i: and t Tor the free-particle 
system, supersymmehy aUows us to determine amplitudes r and f for the rather non-trivial 
potential V ( x )  = 1 - 2sech’x. Note that coefficients 7? = lilz and 1 = liI2 are equal to 
coefficients for the partner potential, R = lrI2 and ‘2- = It12, respectively. 

8. ’hnnelling in a multi-prong system 

Tunnelling is another sector of great interest that shows a marked difference from the two- 
prong case. Consider a system with N identical prongs, each one having one minimum 
(well-like smcture, similar to the two-prong case shown in figure 2). h this section, we 
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look at the tunnelling of a localized wavepacket from one prong to the others. For simplicity, 
we start with a three-prong system. The generalization to higher number of prongs is then 
straightforward. Let ai(?) denote a wavepacket localized in the ith prong. Such a packet 
can be approximated by the following linear combination of eigenstates of the system: 

where i 
the rest. For example, & is given by the three-tuple (2, -1, -1). 

= ~ ( 1 1 . ( O ) ( i , ~ ) + $ ( I ) ( ~ , : ) )  (45) 

(1, 1, 1) and Zi denotes a three-tuple that has a 2 in the ith position and -1 in 

The amplitude for the localized state @;(?) to tunnel out of the prong 1 is given by 

4) = Wjl exp(-iHWi) (46) 
where 

1 
(%@2(.;) + 013@3G)) *f=m $; = @I(.?) and 

(or2 + 013 = 1). Substituting explicit expressions for 11.f and 11.i in (46), we get 

/ G [az@z(?) + 013~3(2)] [e-iEol+(o)(i, 2) + e-iE1i@(l)(Zl, 3 1  = 3" 

9- 

9- 

- - + ~ ( i , ? ) ]  

[e-iEorq,(o)(i, 2 )  +e-i&t@(l)(;l, :)I 
e-iE, i 

I - [a2Z1 . Z2 + c& . Z3 + 3eiSE'] 6E z E~ - Eo 

where we have used ~G1l.(l)(~l,?)ll.(l)(~~,?) = 6 . = Ei(Zl)i(Z2)i. Substituting . ~ i 3  = Z1 . ci; = -3, we get 

Therefore the probability of tunnelling out of prong 1 into prong 2 or prong 3 is 

Pe*9 = l d a 2 . 3 1  2 = 9(01;++;) sin2 (y)  . 

The maximum value for this tunnelling probability is $, and that occurs when a2 = a3 = 4. 
It is worth noting here that, unlike the two-prong case, the wavepacket never completely 
goes out of the prong 1. 

When we generalize this situation to the N-prong case, we find that the probability 
anplitude for a wavepacket @I (2) of tunnelling out of prong 1 is given by 

- where 01 = (012, 013, . . . , O I N }  with CL;/ 

in the ith prong as 
the amplitude for finding the packet 
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This amplitude is maximum for the symmetric case for which all cui are equal. In this case 
the probability of tunnelling is given by 

Thus the probability of tunnelling decreases when more alternatives are available, and 
goes to zero as the number of prongs becomes very large. This very surprising result is 
conceptually similar to the scattering situation discussed in section 7 .  
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